PYTHON FOR SYNOPTIC METEOROLOGY USING METPY

SHORT COURSE ORGANIZER

Ryan May, UCAR/Unidata, Boulder, CO John Lemann, UCAR/Unidata, Boulder, CO Kevin Goebbert, Valparaiso University, Valparaiso, IN

SUN 6 JAN

8:30 а.м.	 ARRIVAL AND INTRODUCTIONS. Ryan May Introduce speakers, their backgrounds. Have participants quickly state their names and what they hope to gain from the course.
8:35 а.м.	 SETUP USER SYSTEMS. John Leeman Install required software for the course and get a copy of course materials.
9:15 а.м.	 INTRODUCTION TO CARTOPY. Kevin Goebbert Making figures with maps using standard Matplotlib calls will be shown. Plotting with geographically referenced data in Python will be introduced.
10:00 а.м.	COFFEE BREAK
10:30 а.м.	 SIPHON FOR REMOTE DATA ACCESS. Ryan May Demonstrate the use of Siphon to access remote datasets through a variety of services that permit downloading all or portions of datasets
11:15 а.м.	 SKEW-T ANALYSIS. John Leeman Use MetPy's plotting functions to produce a publication quality plot. Use MetPy's calculation functions to calculate parameters such as CAPE, CIN, bulk shear, and more from upper air data.
12:00 р.м.	LUNCH (on your own)
1:00 р.м.	 QUASIGEOSTROPHIC ANALYSIS. Kevin Goebbert Use remote data access tools with MetPy and Cartopy to perform a quasigeostrophic analysis of a mid-latitude cyclone The creation of a four-panel plot will be demonstrated.
1:45 р.м.	 ISENTROPIC ANALYSIS. Ryan May Download remote data and use MetPy and CartoPy to generate isentropic maps The creation of a cross-section will be demonstrated
2:30 р.м.	COFFEE BREAK
2:45 р.м.	 VISUALIZING SATELLITE IMAGERY. John Leeman Retrieve satellite imagery from a THREDDS server and plot it on a map with appropriate colorbars. Add annotations to maps generated
3:30 р.м.	 WRAP UP Gather feedback from participants on how the course will be of use to their work and general course feedback.
3:45 р.м.	ADJOURN
4:00 р.м.	AMS ANNUAL MEETING PRESIDENTIAL FORUM